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Abstract: A significant problem in construction automation is the difficulty of interfacing 
and integrating subsystems (e.g. sensors, databases, visualization systems) into a useful 
whole. In this paper, we describe our past and present efforts toward the design and 
implementation of network protocols to address this problem.  Our current design effort 
concentrates on communicating, "who, what, where, and when" data over internet-
protocol (IP) networks, and is based on the IEEE 1278 (distributed interactive simulation) 
protocol family, with some extensions to meet the anticipated needs of construction 
automation systems. 

 
Keywords: Automation, Construction, Data-Exchange, Distributed, Metrology, Protocol. 

 
 

1. INTRODUCTION 
 

One of the significant problems facing 
developers of construction metrology and 
automation systems is the difficulty of interfacing 
to a wide variety of subsystems and integrating 
them into a useful whole.  This is especially true, 
since the subsystems are often numerous, and the 
"best" for any task can change rapidly.  This 
problem has both hardware and software aspects.  
Some of the hardware aspects were addressed in 
[6]; this paper concentrates on the software 
aspects.   

At present, there is no generally accepted 
standard for software subsystems in a construction-
automation system to use for exchanging data with 
one another.  As a result, significant effort in 
implementing such systems goes into creating 
different software interfaces for each sensor, 
actuator, GUI, database, etc.  Since there is often 
little prospect of interface-software reuse (because 
there is so little standardization), system 
developers are often hesitant to change, upgrade or 
experiment with new subsystems.  They have been 
caught in an interface straightjacket. 

We assert that, if we are to avoid this 
productivity sink in the future, we need some 
standard, broadly accepted means to communicate 
information between construction-automation 
software subsystems.  Ideally, this interface should 

work whether the subsystems reside on the same 
computer, or on different ones.   

A completely general distributed data-exchange 
system is probably too ambitious a goal.  We 
believe that an attractive approach is to base a 
data-exchange system for construction-automation 
on an existing protocol (namely IEEE 1278  [3]), 
with some modifications and extensions relevant to 
construction automation.  Our immediate goal is to 
design and implement a draft protocol  (called 
LiveView) that concentrates on communicating, 
"who, what, where, and when" data in an efficient 
manner among construction-automation 
subsystems.   

This paper starts with an overview of 
distributed communications software, and then 
outlines our earlier effort and some of the lessons 
learned.  We then give an overview of the IEEE-
1278, the distributed interactive simulation 
protocol -- the basis for LiveView.  Finally, we 
outline some of the key features and design 
decisions of LiveView, and illustrate with 
examples from related work at NIST's National 
construction-automation test-bed (NCAT). 
 
 

2. RELATED WORK 
 

Since the field of communications in 
distributed (computer) systems is a vast one, we 



will make do with an overview.  There are both 
general-purpose approaches to distributed 
communications, e.g., DCOM (Microsoft) and 
CORBA [2], and there are also tools more-or-less 
specialized for sensors [4], robotics [5] and 
distributed simulations [3].  Among general-
purpose distributed communications, there are 
three common models of information exchange: 
shared memory, request/response, and 
publish/subscribe (see [5] for a literature review 
and discussion.)   There are also several different 
approaches to the types and flexibility of data 
communicated, ranging from pre-defined messages 
to self-describing data.  Finally, there is a range of 
management approaches, ranging from centrally 
managed to completely distributed.   

In the shared-memory model, each subsystem 
"sees" a global, shared memory that can be read or 
written to by any of the sub-systems that 
participate.  This model is convenient, because it 
permits individual subsystems to treat the problem 
largely in a non-distributed fashion, and is 
basically symmetric.   (The symmetry encompasses 
one-to-one, one-to-many, or many-to-many 
communications.)  However, specialized hardware 
or software techniques (e.g. MUTEXes) are needed 
to ensure consistent replication of the shared 
memory among all users, and may not be 
sufficiently efficient or predictable for use in real-
time systems.  Another undesirable characteristic is 
that this model does not provide an easy, efficient 
means of being notified when some data in the 
shared memory is changed. 

In request/response systems, information is 
exchanged by issuing individual requests and 
awaiting the responses.  This model of information 
exchange (also called client/server) is asymmetric, 
and takes place between specific, individual sub-
systems.  This model is probably the most widely 
implemented, and has been used as the basis for 
file systems, windowing systems, and distributed 
databases, [5].  There are several limitations of this 
structure.  First, it requires two transactions per 
update (the request and the response), and is not 
well suited for disseminating data in a one-to-many 
(or many-to-many) fashion.   Secondly, since it is 
basically a pull-oriented system, the information 
flow is analogous to polling, with the requestor 
controlling the timing, and the respondent unable 
to send "alerts" that something has changed 
until/unless the requestor makes the analogous 
request. 
 In publish/subscribe systems, data providers 
publish their willingness to provide specific data, 
and subscribers register with publishers for the 
data they need.  Once a subscription is arranged, 
the subscriber receives data updates from a 
publisher automatically.  (This is analogous to 

web-based "push" systems, where the publisher 
initiates the update events.)  This model is 
attractive for information that needs to be 
distributed to many receivers, and has been 
extended to many-to-many systems, see [5].  It is 
also attractive for event-driven systems, since the 
data-updates are events that can be acted upon 
without the overhead of polling.   Closely related 
are broadcast/multicast systems, in which 
publishers send out information to every computer 
involved and do not keep track of specific 
subscribers.  This approach is low overhead for 
broadcasters, but gives the receivers the burden of 
sifting through the broadcast messages for those of 
interest.  The large-scale feasibility of this variant 
depends on a low-overhead multicast mechanism, 
such as UDP multicast. 

At the risk of drastic over simplification, there 
are three basic strategies for message-based data 
representation: Fixed message types, pre-described 
data, and self-describing data.  These strategies 
trade off efficiency against flexibility.   

Fixed message systems have a finite vocabulary 
of message types, and are usually highly efficient, 
but are fundamentally limited by their rigidity.  
However, the rigid format facilitates simple, 
efficient consistency checking.  (Note, however 
that if one of the "fixed" types is other/user-
defined, both the fixed nature and the efficiency 
are be compromised.)   

The pre-described data strategy is more flexible 
than the fixed-message approach, as it lets users 
pre-define their own data types at compilation 
time, using a data-description language such as 
IDL [2].  However, with the flexibility of user-pre-
defined data comes both a loss of efficiency and a 
potential for inconsistency.  Since the data-
descriptions must be pre-defined (usually at 
compile time), there is a potential for inconsistency 
between sub-systems, e.g., if implemented by 
different groups.  Run-time consistency checking is 
possible, but is not (generally speaking) automatic.   

Finally, there is the self-describing data 
approach, in which every piece of data carries with 
it a self-description.  This approach is extremely 
flexible, but generally has the most overhead 
associated with it.  
 
 

3.  EARLIER NIST WORK 
 

Our initial foray into the distributed data-
exchange (called tetSock) was driven by an 
application.  We had a pre-existing robotic system 
(a 6-degree-of-freedom robotic crane, known as 
TETRA [1]) and we needed to create a 3-D 
visualization of TETRA's operations at a remote 
site [7]; see Figure 1. Since TETRA's controller 



used a different O/S (Microsoft NT) than our 
visualization platform (an SGI workstation), and 
the two were in different buildings, a network-
based protocol was a clear choice.   

Since our immediate need was relatively simple 
(to update position and orientation of a single 
item), the resulting "proto-protocol" was quite 
simple.  It was a strict request/response system, 
built on TCP (streaming) sockets.  It used a small 
set of fixed-format messages (3 messages, all using 
ASCII data representations.)  Communications 
were strictly host-to-host (as opposed to 
distributed), but could be opened and closed at run-
time.  We implemented tetSock in C, on three 
different platforms: Microsoft Windows NT, UNIX 
(SUN and SGI systems), and (later) on a real-time 
O/S, VxWorks. 

 

 
 
Figure [1] shows the 3-D visualization of a 
robotic crane during an assembly operation with 
a steel I-beam.  The inset video image shows the 
correspondence between the model and the real 
system.  The real-time data driving the 
visualization subsystem came from TETRA's 
real-time controller, via the tetSock proto-
protocol.   
 

Even this minimal protocol has helped with 
subsystem reuse.  Using tetSock, we were able to 
adapt our visualization system from TETRA (crane 
updates from an NT system) to a vehicle tracking 
system (all-terrain-vehicle updates from a 
VxWorks system) very easily.  With a more-
carefully-designed protocol, leverage from re-use 
should become very powerful. 
 
3.1 Lessons learned from tetSock  
 
• Even a very limited networked protocol (like 

tetSock) helps with system integration. 
• Ad-hoc protocols are limiting; use/adapt 

existing protocols if possible.   

• Careful, explicit definitions are essential (e.g., 
which way does X point, is it fixed in world 
coordinates?) 

• Pre-defined messages are somewhat limiting, 
but (designed correctly) are a workable choice. 

• We can achieve significant functionality with 
a relatively small number of messages: i.e., 
who, what, where, when. 

• Individual host-to-host connections is a poor 
topology; a central server would be better; a 
true distributed system, better yet. 

• Cross-platform solutions (e.g. not tied to 
specific O/S or language) are important. 

• Temporal issues matter. 
• Quality of data will matter. 
• Security will matter.  
 

4.0 OVERVIEW OF IEEE 1278 
 

IEEE Standard 1278.1a-1998 is a well 
specified, post ballot IEEE specification of network 
data formats and standard practices for distributed 
interactive simulations (DIS).  Originally 
developed in cooperation with the Department of 
Defense to support battlefield simulation, the 
standard has gained support in the general 
simulation community.  The standards covers form 
and content of messages (termed network protocol 
data units, PDUs) and the interactions between 
applications running in the simulation.  Fixed data 
format PDUs are broadcast to participating 
applications.  Management is dynamic and fully 
distributed (no master controlling application). 

In IEEE 1278, entities provide the basic unit of 
operation.  An example of an entity would be a 
tank.  Tanks move, shoot, emit radio waves, are 
struck by ordinance, and other actions that may 
require interaction with other entities.  Entities 
represent physical objects in a simulation; at any 
one time, only one participating application has 
control of an entity.  Applications can control more 
than one entity.  Simulation management functions 
allow control of entities to be passed between 
applications. 

The PDUs covered in IEEE 1278 are divided 
into several domains; of specific interest to 
construction-automation are the domains dealing 
with entity information/interaction, simulation and 
management, synthetic environments, and live 
entity information/interaction.  To support 
interoperability, the format of each type of PDU is 
fixed, and general notices are sent via multicast 
UDP packets.  Specific PDUs provide the means to 
communicate answers to the basic questions of who 
(unique ID), what (event type), where (coordinates 
in a common frame), and when (time stamp keyed 
to a common, coordinated clock.)  Specific 



attention was paid to the development of physical 
state of an entity.  Entity state in IEEE 1278 
includes position (translation from the origin), 
orientation (rotation about axes), articulation (of 
appendages, where appropriate), and rates of 
change of these quantities. 

IEEE 1278 provides a means of communicating 
terrain (termed synthetic environment in IEEE 
1278) between participating computers, and the 
ability to modify the synthetic environment on the 
fly during a simulation.  For construction 
applications, this maps well to earth moving.  

The live entity support in IEEE 1278 provides a 
mechanism where, for example, a real tank could 
participate in a hybrid live/simulated exercise.  The 
primary purpose of the live entity protocols is to 
conserve bandwidth to and from these live entities. 

Additionally, IEEE 1278 provides a full suite of 
management functions to provide simulation level 
management.  Examples of such management 
include mechanisms for running more than one 
simultaneous exercise and determination for when 
a delinquent entity is to be removed from a 
simulation.  Simulation management is distributed 
to all participating applications, with no central 
server or boss applications. The standard is rich in 
functions to manage the exchange of information 
about and between entities.  For example, when 
entities collide, the standard provides a well-
developed mechanism for dealing with that 
collision. Extensions to the set of PDUs are 
handled robustly by the IEEE 1278 to enable 
extensions of functional behavior.  We plan to take 
advantage of this feature in LiveView. 
 
4.1 Related Implementations 
 

The DIS-Java-VRML Working Group of the 
VRML Web 3D consortium [8] is working on the 
conjunction of IEEE 1278 (DIS), with Java 
language and the VRML 3-D graphics file format.  
The focus of this working group is to complete a 
freely available reference Java implementation of 
the DIS protocol (in contrast to the current 
proprietary implementations.) Another goal is to 
produce a set of recommended practices for 
mapping between DIS and VRML worlds.  The 
focus of this group is still simulation oriented. 
 
4.2 Beyond Simulation 
 

An essential activity in construction automation 
is the collection of measurements from field agents 
(machines, people, or man-machine teams at 
construction sites.)  Although IEEE 1278 provides 
a mechanism for communicating some information 
about field agents (live entity protocol), it does not 

provide a way to communicate the data resulting 
from the use of sensors that observe the state of the 
world, as opposed to the state of the entity itself.  
Also, within IEEE 1278 there is not currently a 
way to make use of that observed data to update the 
model of the world in the simulation (e.g. sending 
an updated terrain model to all participating 
applications).  The purpose of LiveView is to 
establish a set of standard practices and message 
protocols to incorporate observed data into a DIS.  
This is a proposed extension to IEEE 1278. 

Both IEEE 1278 and the DIS-Java-VRML 
working group are focusing on simulation.  To 
these applications, an active sensor is only modeled 
in terms of whether it can be detected by other 
entities already simulated in the exercise (and then 
attacked).  However, in construction metrology, a 
field entity may discover a new entity.  Results of 
sensors that observe the external world, active or 
passive, are not supported by IEEE 1278.  What is 
needed is a way to report these observations, and 
potentially offload expensive sensory data analysis 
from a field observer to a more powerful system. 

In line with the rest of IEEE 1278, the 
LiveView extensions need to be independent of 
language or operating system.  In the future, it is 
envisioned that vendors would develop products 
that communicated using this specification.  To 
enable the greatest forward flexibility, this 
specification should not limit options in realizing 
implementations. 
 
 

5.0 OVERVIEW OF LIVEVIEW 
 

LiveView was inspired by the process by which 
the oil industry provides oil and gasoline to its 
consumers.  A data factory (oil producing 
company) collects data.  Then transmits this mostly 
unprocessed data (oil tankers transporting crude) to 
a data interpreter (oil refinery).  The interpreter 
analyses the data to produce IEEE 1278 PDUs 
(gasoline) to be transmitted to the visualization 
system (your car.) 
 
5.1 A Simple Example 
 

In a simple case, the data factory is capable of 
all the necessary sensor processing to create PDUs. 
Consider a field agent that provides a state update 
(who/what/where/when) for a static object 
encountered, for example, reading the bar code 
from a girder on a construction site; see Figure 2. 
 
 
 



Figure [2].  In this simple case, the field agent 
can interpret the data from the sensor observing 
the object to generate PDUs to describe the 
girder to the simulation. 
 

After the field agent has identified the object 
and determined the object’s position, it is necessary 
to broadcast any updates to the data consumers.  In 
this case, the facilities for entity creation and 
managing entity information, provided in IEEE 
1278, provide a common data exchange to enable 
communication between the field agent and the 
data consumers. 
 
5.2 Complex Case 
 
 In some cases, observed data may need 
significant processing to yield information about 
entities in the simulation.  For example, an entity 
may need to be recognized by its shape – a 
significant computation.  Another example is the 
generation of a terrain from a large number of laser 
range measurements over a field of view (a LIDAR 
raster scan of the ground); see Figure 3. 
 

 
Figure [3]. In this more complex case, an 
external application is needed to interpret the 
raster scans and generate the resulting PDUs. 

A data factory in this model may be a fix-
mounted scanning LIDAR station or a mobile one. 
The purpose of these factories is to produce raw 
data in some form, potentially in a proprietary 
format.  In some cases, some local processing or 
fusion of sensory data may be possible, such as 
combining GPS data with the range to a target 
object to provide the global position of the object.  
In the general case however, the data set may be 
too large, or the algorithms too expensive for a 
local system to perform.  In such a case, the data 
set must be packaged and sent to an application 
that will perform a more detailed analysis of the 
data set and create the PDUs necessary to update 
the model of the world. 

The data-interpreter application serves as a 
black box that receives data from one or more 
factories and produces IEEE 1278 compliant 
PDUs.  Following our example, the location of 
multiple scanners combined with their respective 
scans of a construction site provides the input 
necessary to generate a terrain map of the 
construction site.  In this case, the data 
interpreter(s) provide scan registration and perform 
the actual meshing of the data into terrain PDUs. 

This proposed structure provides a mechanism 
for accommodating vendor specific solutions.  If a 
vendor uses a customized reader/sensor, then the 
vendor could provide an interpreter to provide a 
mapping between the vendor’s proprietary system 
and this modified DIS standard. 
 
 

6. FUTURE PLANS 
 

The creation of a LiveView reference 
implementation of the extensions is an immediate 
goal of this work.  The target platforms for this 
reference are Microsoft Windows and POSIX 
(UNIX).  Windows is being developed as the 
reference platform for site display.  POSIX 
platforms will be providing database and network 
support.  Additionally, the mobile sensor platforms 
run VxWorks, a real-time, POSIX conformant 
operating system. 

Development of standard practice documents 
for applying LiveView to construction automation 
and metrology tasks is a related task.  These formal 
documents will provide system integrators with a 
complete picture of how a working system is put 
together.  Additionally, such a document provides 
vendors of specific systems a model to follow for 
how their products could be used. 

Another issue we seek to address is to be able to 
provide “Quality of Data” estimates with measured 
phenomena.  Currently, due to the nature of 
simulation, if an entity reports a position, there is 
no reason to question the potential error in that 
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message.  However, field methods for measuring 
position have limited accuracy.  The data quality 
might be represented with a simple confidence-
band, or a more complex function.  Issues in how 
to present and transport information of this nature 
needs to be investigated further. 

Although LiveView covers reporting the results 
of sensory activities between simulated and non-
simulated entities, remote control of live entities is 
not presently being addressed. 

Finally, the issue of security and access rights 
in LiveView will have to be addressed.  Current 
research in security for distributed systems needs to 
be evaluated and applied to the LiveView system.  
This work will become critical before control of 
live entities is transacted over the system 
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